
Measuring Application Security

Christopher Horn1, Anita D‘Amico2

1 Secure Decisions, Clifton Park, NY, USA

chris.horn@securedecisions.com
2 Code Dx, Northport, NY, USA

anita.damico@codedx.com

Abstract. We report on a qualitative study of application security (AppSec) pro-

gram management. We sought to establish the boundaries used to define program

scope, the goals of AppSec practitioners, and the metrics and tools used to meas-

ure performance. We find that the overarching goal of AppSec groups is to ensure

the security of software systems; this is a process of risk management. AppSec

boundaries varied, but almost always excluded infrastructure-level system com-

ponents. Seven top-level questions guide practitioner efforts; those receiving the

most attention are Where are the application vulnerabilities in my software?,

Where are my blind spots?, How do I communicate & demonstrate AppSec’s

value to my management?, and Are we getting better at building in security over

time?. Many metrics are used to successfully answer these questions, but one

challenge stood out: there is no good way to measure AppSec risk. No one metric

system dominated observed usage.

Keywords: Application security · Security management · Security metrics ·

Program management · Risk management

1 Introduction

Cybersecurity is receiving more attention than ever. With the ubiquity of computers,

the list of possible harms that can result from malicious attacks on computers and com-

puter networks is endless. Many, some say most, cyber incidents can be traced to ex-

ploitation of software vulnerabilities. The Software Engineering Institute estimates that

90% of cyber incidents are traceable to the attacker's exploitation of software defects

[1]. The 2016 Verizon Data Breach report indicates that 40% of all data breaches were

achieved using a web application attack [2]. Reducing software application vulnerabil-

ities is a primary lever by which most organizations can reduce their risk exposure.

Application security is a specialty within cybersecurity that’s focused on improving

the security of application software. It focuses on understanding the threats posed to

applications, the vulnerability to those threats, and the means of mitigating the resulting

risk.

Assuring application security is much more than a technology problem – it requires

coordinating the actions of numerous people, which means organization and process.

Roles and responsibilities must be defined; budgets must be approved; people need to

be hired, educated, and enabled to develop skills; culture needs to be created; tools need

mailto:chris.horn@securedecisions.com
mailto:anita.damico@codedx.com

to be selected and acquired; and policies and processes must be defined [3–6]. Organi-

zations orchestrate these activities under application security programs. Typically

formed under a Chief Information Security Officer (CISO), these programs are directly

staffed with a relatively small number of people (median of 4.3 per 1,000 developers

[7]) who are charged with meeting the goals of the program.

Understanding the problem space that application security (AppSec) practitioners

face and documenting and disseminating the methods that they have developed for

measuring and tracking the effectiveness of their programs is a key part of maturing

and refining AppSec practices. There is a significant amount of thought-intensive work

required to discover effective metrics for assessing the performance of an AppSec pro-

gram [8, 9].

To better understand how AppSec programs are managed, we set out to explore:

▪ The boundaries used to define the scope of an application security program

▪ The goals of the people responsible for assuring application security

▪ What information and metrics are being used to guide decision-making

▪ The tools being used to measure and track AppSec metrics

2 Methodology

In 2017, Secure Decisions investigated how people measure the progress and success

of their application security tools and programs. We employed a two-pronged approach,

combining a literature review with interviews of application security practitioners. This

approach allowed us to sample multiple perspectives on security and management.

2.1 Literature Review

We identified and read over 75 research papers, technical reports, books, magazine

articles, blog posts, and presentations during our investigation. Our primary line of in-

quiry was into metrics related to security and risk, including technical debt, vulnerabil-

ity, security requirements and controls, threat probability, and process compliance. We

also sought out information on security investment decision-making, including return

on security investment and risk quantification.

2.2 Interviews

We interviewed 13 people who work in application security roles at both commercial

and government organizations. The commercial organizations included healthcare in-

surers, software producers, and military/defense contractors. The government organi-

zations were mostly federal-level independent verification & validation groups, but also

included an IT group in a state agency with responsibility for the security verification

of custom-developed application software.

Interviews were conducted over a voice & screen share Web conference using a

semi-structured format. Interviews typically lasted for one hour.

Each interview was comprised of four major sections. First, we began with a stand-

ard introduction in which we introduced ourselves and our research objectives, and col-

lected some basic, demographic-type information. Second, we presented several Pow-

erPoint slides and asked for the level of agreement with each; the slides covered a de-

scription of a “metric”, the root goal of application security, and the technical scope of

application security. By this point, interviewees were fully engaged as we began the

third section – the bulk of the interview. We asked about their management goals and

any metrics that they use to measure performance against these goals. For each metric,

we probed about the audience, the frequency with which information is tabulated/re-

ported, and the technical means by which the data are collected. Finally, in the fourth

section, we reviewed a pre-formulated list of “management purposes” to prompt for

forgotten metrics and affirm that we accurately captured management priorities. During

this final section, we also gave interviewees an open-ended prompt to talk about any-

thing on their mind and ask us questions.

We selected the semi-structured interview format because it is an effective means of

exploring complicated research questions [10], enabling researchers to uncover new

and unexpected findings that would not be possible using a structured survey instru-

ment. The format allowed us to obtain detailed contextual information about each in-

terviewee’s role and their organization’s mission and structure, to better understand

their priorities and behaviors.

3 Observations

3.1 Types of Organizations

During the interviews, we noticed that practitioners’ focus varied based on the type

of organization in which they worked. We saw two broad types of AppSec organization:

1. External reviewer

An independent verification group, most commonly a legally separate third-party.

2. Internal department

An application security group operating as a peer group in its parent organization.

While we observed that the primary goal of both types of organization is to ensure

the security of software systems, we noted a subtle difference in the approach to that

goal. External reviewers were more verification driven (that is, measuring compliance

with formally-defined requirements) whereas internal departments considered a

broader range of means to achieving security. As most of the external reviewer organi-

zations were governmental, we believe that this reality is driven by the bureaucratic

structures that drive U.S. federal procurement and mandate an external reviewer role.

A related distinction between these two types of organization was the different level

of influence that each has on the product development process. External reviewers have

less influence on things like developer training, architecture, and requirements that were

often cited as levers of control by practitioners in internal departments.

3.2 Personnel Roles

While there were almost as many job titles as people in our interviews, practitioners

in our sample generally fell into one of two broad roles: director and analyst.

In an internal department, the director role is broadly responsible for the application

security program. This person champions secure development practices with the soft-

ware development organization, establishes the structure, roles, and responsibilities of

their team, defines testing policies and processes, selects testing tools, hires analysts,

and manages the departmental budget.

In an external review organization, the director role has similar management respon-

sibilities, but typically does not have a software development organization with which

to champion secure development practices.

At the lower level, analysts are people who work directly with application security

testing tools, screen findings for review with development teams, and serve as security

subject matter experts who answer questions that arise during design and development.

Within the internal departments that we spoke with, AppSec analysts were almost

exclusively centrally deployed to review applications in a “service bureau” model. By

the same token, almost every organization was working to increase the security literacy

of developers and develop at least one strong security champion who is embedded in

each development team. Providing security input during the early, architecture-design

phases of a project was another area of growth that internal departments were pursuing.

3.3 Application Security Boundaries

One of the first questions that we asked interviewees was, Where is the boundary on

what is an “application”?. The definition of an application is somewhat vague, and can

refer to both an individual software executable and a system of interdependent and net-

worked executables running across multiple hosts [11]. Through this question we

wanted to elicit the scope of responsibility that organizations have assigned to applica-

tion security groups.

The practitioners in our sample work with high-complexity software systems. Due

to their scale, the work to build and maintain these systems is often organizationally

managed along functional lines of different specialties. For example, product regression

testing is often the responsibility of a quality assurance (QA) group that is managed

independently from the software development group that writes the source code of a

product. Similarly, the group responsible for application security, a relatively new spe-

cialty, is charged with ensuring the security of software systems.

By asking practitioners about the boundary of “applications”, we could learn about

what types of security concerns they manage. For example, if practitioners focus more

on application source code, they will necessarily pay more attention to flaws like SQL

injection as opposed to the patch version of third-party applications and firmware.

When asking this question, we presented four levels of system components:

▪ First-party source code

▪ Third-party library

▪ Third-party application (database, application server, operating system)

▪ Infrastructure (hypervisor, load balancer, router, SAN)

Responses for 11 of the 13 interviewees were split evenly between organizations that

are responsible for only the top two levels (first-party source code and third-party li-

braries), and those responsible for the top three levels. There remaining two practition-

ers, working in external review organizations, noted that safety-critical systems, such

as those found in naval and aviation contexts, are granted certifications at a whole-

system level. In these cases, all levels of a system’s software are considered during

evaluation (hardware is reviewed separately).

It is well known that any component of a system (regardless of its level) can expose

security vulnerabilities. The practitioners working in an internal capacity generally re-

vealed that their motivation is to ensure the security of internally-deployed systems,

thereby requiring attention to all levels of system components. Per their answers to the

boundary question, however, most indicated that they focused on ensuring the security

of higher-level components (source code & libraries), while others (e.g., an IT group)

bore responsibility for lower-level infrastructural components.

We also asked if the boundary is shifting over time. Most practitioners saw a trend

toward being responsible for ensuring the security of whole systems (i.e. all levels of

system components).

3.4 Goals, Questions, Metrics, and Tools

Understanding, documenting, and disseminating the goals, questions, and metrics

that AppSec practitioners use to define and measure their work is a key part of maturing

and refining AppSec practices and designing tools that better support their needs.

Modern planning and management practices commonly define four levels of detail

about how goals will be achieved. These levels of detail are important for building a

shared understanding and encouraging accountability, but are not necessary to under-

stand what practitioners believe to be important [12–15]. For this, we turn to a software

engineering method called Goal Question Metric (GQM) approach. This approach was

originally defined at the NASA Goddard Space Flight Center and has since been

adopted more widely [16].

In the top-down GQM approach, a conceptual-level goal for a product, process, or

resource is identified. Then, a set of questions are created to break down the goal into

its constituent parts. Finally, metrics are created to define a means of reliably assessing

or characterizing an answer to each question [16]. Technically, measures and metrics

are separate concepts; from the ISO/IEC/IEE standard on systems and software engi-

neering vocabulary, measures are a systematic way “of assigning a number or category

to an entity to describe an attribute of that entity” and metrics are a “combination of

two or more measures or attributes” [17]. However, both concepts can serve as metrics

in the GQM approach, so we do not distinguish between them in this paper.

Goals. We observed that the overarching goal of application security organizations is

to ensure the security of software systems. Security is defined as the state of being con-

fident that “bad things” (i.e., adverse consequences, or losses) cannot happen.

More specifically, every practitioner agreed that the root goal of application security

is to achieve the correct risk–cost balance. That is, to reduce expected losses attributable

to undesirable behaviors of software applications to an acceptable level, given available

risk mitigation and remediation resources.

In other words, application security is a form of risk management. The idea that

software security is risk management is echoed in both a guide on software security

from the Carnegie Mellon University Software Engineering Institute as well as Dr. Bill

Young, a Senior Lecturer and Research Scientist in the Department of Computer Sci-

ence at the University of Texas at Austin [18, 19].

Questions. Through our interviews, we heard approximately 30 distinct questions that

practitioners asked while ensuring the security of software systems. For example,

Where are the defects in my software?, What does good performance look like?, and

Where are my blind spots?. Many times, the questions that we heard from different

participants were variations on a theme; this section synthesizes those raw inputs.

While considering presentation strategies, we identified several possible groupings

of questions; for example:

▪ Using the risk management process, which consists of seven steps: identify risk ex-

posure, measure and estimate risk exposures, assess effects of exposures, find instru-

ments to shift/trade risks, assess costs and benefits of instruments, form a risk miti-

gation strategy (avoid, transfer, mitigate, keep), evaluate performance [20].

▪ A list of “management purposes” that we formulated in preparation for the inter-

views to prompt discussion. This list included eight management categories: security

(risk reduction), security control effectiveness, process compliance, engagement &

adoption, cost, throughput capacity, staffing, and effect of an intervention.

▪ Another list that we developed, based on the object of measurement/consideration:

an application (or a portfolio of applications), the things that create applications (e.g.,

people, processes, tools, and interim products), and organizations and policy-level

constructs (e.g., roles, policies, and process definitions).

▪ The NIST Cybersecurity Framework [6] that several respondents volunteered had

helped inform their AppSec programs. This framework identifies five areas of man-

agement of cybersecurity risk: identify, protect, detect, respond, and recover.

▪ Various forms of maturity model [4, 5, 21–23].

Each of these groupings has merits, but fails to provide a clear picture of the needs

that we observed. The clearest way to convey this picture is a simple, hierarchical list.

Ordered roughly in descending frequency of report, this list mirrors what practitioners

believe to be important.

The hierarchy also partially conveys the relative sequence of need, which can corre-

late with maturity – less mature organizations typically develop coarser answers to

higher-level questions while more mature organizations have refined their practices to

the point where finer-grained answers of sub-questions are relevant. For example, we

heard from several people that organizations first focus on onboarding all teams to the

secure development lifecycle (SDL) [24]. Similarly, monitoring the frequency or type

of defects being introduced by certain teams, or developers, is a later-stage concern.

1. Where are the application vulnerabilities in my software?

(a) What should I fix first?

(i) What are the highest risk vulnerabilities?

(1) What adverse consequences do I face?

2. Where are my blind spots?

(a) Is the AppSec program complete and meeting needs?

(i) Are policies and procedures documented?

(ii) Are roles and responsibilities defined?

(iii) Is AppSec group providing all relevant services and meeting needs (e.g.,

static analysis security testing (SAST) tools, dynamic analysis security test-

ing (DAST) tools, manual code review, penetration testing, architectural

analysis, software composition analysis, security guidelines/requirements)

(1) Does program need more/different staff/tools/procedures?

(2) Does testing cover all relevant types of weakness/vulnerability?

(b) Have all teams/projects been onboarded to the SDL?

(i) Have all staff had required training?

(ii) How do we persuade developers to adopt secure development practices?

(c) Are all teams adopting/practicing the SDL?

(i) Are teams using the security resources provided by the AppSec group?

(1) Are teams following security control requirements and guidelines?

(2) Are teams consulting with AppSec analysts?

(3) Are teams using the scanner tools that are provided?

(d) How much of a system is covered by testing?

(e) Have as-built systems drifted from modeled designs (e.g., threat models)?

(f) How is the attack surface changing?

(g) How do I make attacks/breaches more visible (i.e. increase the probability of

detection)?

(h) Are the security controls being implemented effective?

3. How do I communicate & demonstrate AppSec’s value to my management?

(a) What does good performance look like (i.e. benchmark)?

(i) Are we meeting the industry standard of care [25]?

(b) Is risk decreasing?

(c) How do we show that we react quickly to rapidly evolving needs?

(d) Are we slowing down "the business" (i.e. what is AppSec’s effect on release ca-

dence, or time to market)?

(e) What are the financial costs of AppSec?

(i) What is the cost of remediation?

(ii) How many AppSec employees are employed?

(iii) How much do AppSec testing tools cost?

4. Are we getting better at building in security over time?

(a) What percent of security requirements/controls are satisfied/implemented?

(b) How long do findings/vulnerabilities take to resolve?

(c) How long does it take to discover a vulnerability from its introduction?

(d) What mistakes are developers making?

(i) Where is improvement needed?

(1) On specific projects?

(2) With certain teams/developers?

(a) Which teams/developers are introducing defects?

(b) Is each team/developer introducing fewer defects over time?

(3) During specific phases of development?

(4) With specific languages or technologies?

(e) How much time is spent on security remediation?

(f) How can software maintenance costs be reduced?

5. Demonstrate compliance with requirements (e.g., internal commitments, external

standards such as NIST 800-53, OWASP Top 10 or Application Security Verifica-

tion Standard (ASVS), and DISA STIGs [26–28])

(a) Are all teams practicing the SDL?

(b) What is the severity of the vulnerabilities in my software products?

(c) Are vulnerabilities being resolved within required time periods?

6. How do I make attacks/breaches more difficult for adversary?

7. What is the AppSec team’s input to the broader organization’s acquisition decisions

of systems/capabilities?

(a) Is it less expensive to assure the security of software that is built in-house versus

acquired from a third party?

(b) What are the expected ongoing costs of security remediation for a system?

(i) What system properties contribute most to the cost of maintaining the secu-

rity of a system?

Metrics. Like with the questions that practitioners ask, there are many ways to group

or characterize metrics. For example, we can differentiate between technical versus op-

erational [9], leading versus coincident versus lagging, and qualitative versus quantita-

tive [29] metrics. We can differentiate between metrics that measure processes believed

to contribute to the security of a system and those that denote the extent to which some

security characteristic is present in a system. We can also evaluate metrics according to

how well they satisfy many goodness criteria [30]. As with the questions, though, pre-

senting metrics using these characteristics does not clarify what practitioners measure.

These characteristics can be useful as cues on how to interpret metric data. For ex-

ample, if a code quality metric is assessed qualitatively (i.e., judged by a human re-

viewer), there is likely variation between assessments of different reviewers. In this

case, care should be taken when interpreting scores and one should consider statistical

methods to assess inter-rater reliability [31].

Metrics must really be considered in the context of a question that is being asked.

Due to space limitations, we cannot discuss each question individually. Instead, we will

discuss specific questions that stood out across multiple interviews.

Every practitioner asks question 2.b, Have all teams/projects been onboarded to the

SDL?. Their objective, often achieved, is to have 100% of development teams and pro-

jects in basic compliance with secure development processes. The metrics used to track

this are the number and percent of teams with all members having received training,

routinely have their application(s) scanned by the AppSec group, and/or been set up

with access to centralized, automated security testing tools.

After this basic team coverage is achieved, several practitioners noted shifting their

attention to question 2.c, tracking the degree to which development teams apply secu-

rity tools and thinking to their projects. One practitioner assesses this using question

2.c.i.2 Are teams consulting with AppSec analysts?. This practitioner looks at the num-

ber of weeks since a team last posed a question to an AppSec analyst and proactively

reaches out to teams beyond 4-8 weeks. Other practitioners monitor 2.c.i.3 with the

number and frequency of scans run with security testing tools. Another practitioner

monitors 2.c per project using the presence of a documented threat model.

For questions 3 and 3.b, What does good performance look like (i.e. benchmark)?

and Is risk decreasing?, every practitioner is interested in the number of defects de-

tected by the various forms of application security testing. Detected defects are the most

readily available data to practitioners. These data are used to answer multiple questions,

including comparing projects and approximating the security risk in applications.

Because the number of defects increases with the number of lines of code, equation

1 shows how some practitioners normalize defect count to lines of code to support com-

paring projects. Source lines of code usually doesn’t include comments nor whitespace.

 defect density = defect count ÷ source lines of code . (1)

Also, defects are commonly filtered to include only those with the highest severity,

as determined by automated security testing tools; most practitioners reported using

only “critical” or “high” or “CAT 1” and “CAT 2” severity defects.

Finally, one of the key findings from our study is that practitioners want to measure

AppSec risk, but there is no good way of doing so. Two areas that were very challenging

for practitioners are assessing risk and communicating with management. These two

challenges are likely related: risk is one of management’s key areas of concern [32, 33]

and risk is fiendishly difficult to assess.

Risk is the potential of gaining or losing something of value. Convention in the in-

formation security domain, however, is to use the word to mean potential losses. A risk

is fundamentally about an uncertain event; a risk has two components: 1) an event with

an expected probability, or likelihood, and 2) an outcome with a cost, or severity. The

expected value of a loss associated with a risk is the cost of the event’s outcome multi-

plied by the probability of that event [34–36].

Risk is said to be increased by:

1. Increasing the probability of the event (aka threat)

2. Increasing the probability of the event’s success

(a) Via properties of the attack

(b) Via properties of the vulnerability

3. Increasing the cost/severity of the outcome

An example of a risk is that a cyber-criminal could exploit a command injection

vulnerability on an Internet-facing service to open a remote shell through which they

gain access to the internal network and exploit a SQL injection vulnerability on an in-

ternal web service and gain access to customer Social Security numbers. In this exam-

ple, the event is a chained attack via vulnerabilities in two applications and the outcome

is the unauthorized disclosure of customer personally identifiable information (PII).

Research in optimal information security investment strategy uncovered many prac-

tically infeasible ways to estimate the expected loss of risk. There is insufficient data to

estimate the probability of most events [19, 30, 37–39], the complexity and information

requirements of modeling system structures are very high [38], and the scope of out-

come cost estimates (including things like liability, embarrassment, market-share and

productivity losses, extortion and remediation costs [37]) is daunting.

We observed several organizations that make do with manual estimations of risk.

One organization uses custom forms in the Atlassian JIRA issue tracker that prompts

analysts to assign 8 probability factors that model threat and vulnerability and 6 out-

come cost factors that model the financial and operational effects per defect finding.

Another organization avoids the difficulty of estimating expected loss by substituting

the amount that they would pay out if the bug was discovered in their bounty program.

To capture the risk associated with chained attacks that move between different micro-

services, they developed a system that records trust relationships between services and

can report manually-generated threat-risks that are “inherited” from other services [40].

Tools. We found a range of systems for measuring and tracking information to assess

the effectiveness of AppSec programs. These systems included ad-hoc personal obser-

vations, manually-maintained spreadsheets, use of reporting features in commercial

software security tools, basic in-house solutions (e.g., a relational database sometimes

with a Web interface), and elaborate in-house solutions (e.g., multiple systems and da-

tabases, automated extract transform and load (ETL) jobs, one or more data ware-

houses, and sometimes third-party governance risk and compliance (GRC) software).

No one measurement and tracking system dominated observed usage. Even within a

single organization, multiple solutions are often used to measure and track different

metrics. All organizations relied heavily on commercial application security testing

tools as the primary source of application vulnerability data, but most augmented these

data with results from manual code reviews and manual penetration testing. All organ-

izations correlated and normalized this raw testing data using a vulnerability manage-

ment system (often Code Dx) to facilitate interpretation and triage of testing findings.

Acknowledgements. This work was made possible by Secure Decisions, the Depart-

ment of Homeland Security, and AppSec practitioners, many introduced to us by Code

Dx, Inc. We would sincerely like to thank these practitioners for their time and candid-

ness during the interviews; this work would have not been possible without their par-

ticipation.

This material is based on research sponsored by the Department of Homeland Secu-

rity (DHS) Science and Technology Directorate, Cyber Security Division (DHS

S&T/CSD) via contract number HHSP233201600058C. The views and conclusions

contained herein are those of the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either expressed or implied, of the

Department of Homeland Security.

4 References

1. Davis, N.: Developing Secure Software. New York’s Software & Systems Process

Improvement Network. , New York, NY (2004).

2. 2016 Data Breach Investigations Report. Verizon Enterprise.

3. CISO AppSec Guide: Application Security Program - OWASP,

https://www.owasp.org/in-

dex.php/CISO_AppSec_Guide:_Application_Security_Program.

4. About the Building Security In Maturity Model,

https://www.bsimm.com/about.html.

5. OpenSAMM, http://www.opensamm.org/.

6. Framework for Improving Critical Infrastructure Cybersecurity,

https://www.nist.gov/sites/default/files/documents/cyberframework/cybersecu-

rity-framework-021214.pdf, (2014).

7. McGraw, G., Migues, S., West, J.: BSIMM8, https://www.bsimm.com/down-

load.html, (2017).

8. Payne, S.: A Guide to Security Metrics, https://www.sans.org/reading-

room/whitepapers/auditing/guide-security-metrics-55, (2006).

9. Sanders, B.: Security metrics: state of the Art and challenges. Inf. Trust Inst. Univ.

Ill. (2009).

10. Miles, J., Gilbert, P.: A Handbook of Research Methods for Clinical and Health

Psychology. Oxford University Press (2005).

11. Application software, https://en.wikipedia.org/w/index.php?title=Applica-

tion_software&oldid=826560991, (2018).

12. Steiner, G.A.: Strategic Planning. Simon and Schuster (2010).

13. JP 5-0, Joint Planning, http://www.jcs.mil/Doctrine/Joint-Doctrine-Pubs/5-0-Plan-

ning-Series/, (2017).

14. Douglas, M.: Strategy and tactics are treated like champagne and two-buck-chuck,

https://prestonwillisblog.wordpress.com/2015/05/15/strategy-and-tactics-are-

treated-like-champagne-and-two-buck-chuck/, (2015).

15. Marrinan, J.: What’s the difference between a goal, objective, strategy, and tactic?,

http://www.commonbusiness.info/2014/09/whats-the-difference-between-a-goal-

objective-strategy-and-tactic/, (2014).

16. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach.

Encycl. Softw. Eng. 2, 528–532 (1994).

17. ISO/IEC/IEEE 24765:2010(E) Systems and software engineering — Vocabulary,

https://www.iso.org/standard/50518.html, (2010).

18. Allen, J.: How Much Security is Enough, https://resources.sei.cmu.edu/as-

set_files/WhitePaper/2013_019_001_295906.pdf, (2009).

19. Young, B.: Measuring Software Security: Defining Security Metrics. (2015).

20. Crouhy, M., Galai, D., Mark, R.: The Essentials of Risk Management. McGraw-

Hill, New York (2005).

21. Krebs, B.: What’s Your Security Maturity Level?, https://krebsonsecu-

rity.com/2015/04/whats-your-security-maturity-level/, (2015).

22. Richardson, J., Bartol, N., Moss, M.: ISO/IEC 21827 Systems Security Engineer-

ing Capability Maturity Model (SSE-CMM) A Process Driven Framework for

Assurance.

23. Acohido, B., Sager, T.: Improving Detection, Prevention and Response with Se-

curity Maturity Modeling, https://www.sans.org/reading-room/whitepapers/ana-

lyst/improving-detection-prevention-response-security-maturity-modeling-

35985, (2015).

24. Microsoft Security Development Lifecycle, https://www.microsoft.com/en-

us/sdl/default.aspx.

25. Olcott, J.: Cybersecurity: The New Metrics,

https://www.bitsighttech.com/hubfs/eBooks/Cybersecurity_The_New_Met-

rics.pdf?t=1509031295345&utm_source=hs_automation&utm_me-

dium=email&utm_content=37546190&_hsenc=p2ANqtz--m-

crOcN48EycaIJFVXnHInTyc_LOO2aQWbl5YHXd3Fz34z7w0EfMptTs1_XnO

GjEH_6jM_g6FUJUgAMYFSjV06QDmyQ&_hsmi=37546190, (2016).

26. SP 800-53 Rev. 5 (DRAFT), Security and Privacy Controls for Information Sys-

tems and Organizations, https://csrc.nist.gov/publications/detail/sp/800-53/rev-

5/draft.

27. Wichers, D.: Getting Started with OWASP: The Top 10, ASVS, and the Guides.

13th Semi-Annual Software Assurance Forum. , Gaithersburg, MD (2010).

28. Application Security & Development STIGs, https://iase.disa.mil/stigs/app-secu-

rity/app-security/Pages/index.aspx.

29. Jansen, W.: Directions in security metrics research, http://nvl-

pubs.nist.gov/nistpubs/Legacy/IR/nistir7564.pdf, (2009).

30. Savola, R.: On the feasibility of utilizing security metrics in software-intensive

systems. Int. J. Comput. Sci. Netw. Secur. 10, 230–239 (2010).

31. Hallgren, K.A.: Computing Inter-Rater Reliability for Observational Data: An

Overview and Tutorial. Tutor. Quant. Methods Psychol. 8, 23–34 (2012).

32. The 15-Minute, 7-Slide Security Presentation for Your Board of Directors,

https://blogs.gartner.com/smarterwithgartner/the-15-minute-7-slide-security-

presentation-for-your-board-of-directors/.

33. Gaillard, J.C.: Cyber Security: Board of Directors Need to ask the Real Questions,

http://www.informationsecuritybuzz.com/articles/cyber-security-board-of-direc-

tors-need-to-ask-the-real-questions/, (2015).

34. Risk, https://en.wikipedia.org/w/index.php?title=Risk&oldid=824832006, (2018).

35. Gordon, L.A., Loeb, M.P.: The economics of information security investment.

ACM Trans. Inf. Syst. Secur. TISSEC. 5, 438–457 (2002).

36. Expected value, https://en.wikipedia.org/w/index.php?title=Ex-

pected_value&oldid=826427336, (2018).

37. Hoo, K.J.S.: How much is enough? A risk management approach to computer se-

curity. Stanford University Stanford, Calif (2000).

38. Schryen, G.: A Fuzzy Model for IT Security Investments. (2010).

39. Böhme, R.: Security Metrics and Security Investment Models. In: IWSEC. pp. 10–

24. Springer (2010).

40. Held, G.: Measuring End-to-End Security. AppSecUSA 2017. , Orlando, FL

(2017).

